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 1A : Bag-of-Words Design Decision Description 

 To convert each passage into numerical features for classification, we used a Bag-of-Words (BoW) 
 representation implemented via scikit-learn’s TfidfVectorizer which uses TF-IDF features instead of 
 counts or binary values to improve our AUROC value. 

 As a preprocessing step, we made all text lowercase using pandas.Series.str.lower() and also setting 
 lowercase=True in the vectorizer. We did not manually remove punctuation, but relied on 
 TfidfVectorizer's built-in tokenizer to handle this. To reduce noise and improve generalization, we 
 excluded stopwords (e.g. "the," "a," "is," "and," and "in") by setting stop_words='english' in the 
 vectorizer, and applied document frequency thresholds (min_df=3, max_df=0.8). This removed very rare 
 terms (which might lead to overfitting) and overly frequent ones (since they won’t give us reliable info in 
 the prediction). We set the ngram range to use unigrams to consider each word individually. We also used 
 regex in the token pattern setting to remove non-alphanumeric characters as they wouldn’t affect the 
 reading level as much. To ensure that words that appear more frequently don’t become more important 
 and have more influence than words that don’t, we set sublinear_tf and binary to true. 

 Our final vocabulary size was  9414  terms. Since TfidfVectorizer  builds vocabulary solely from training 
 data, any out-of-vocabulary (OOV) words in the test set are ignored automatically at prediction time. 

 All components were implemented using existing tools from the  scikit-learn  library. 

 1B : Cross Validation Design Description 

 The performance metric we used to optimize on heldout data is AUROC on the train set. To select 
 hyperparameters and estimate generalization performance, we used 5-fold cross-validation via 
 GridSearchCV. The data was randomly shuffled into five folds, each containing approximately 20% of the 
 training set for validation and 80% for training. 

 After identifying the best hyperparameter (best C value: 0.001) via mean AUROC across folds, we refit a 
 final model on the entire training set with that configuration. This final model was used to generate 
 predictions for the test set. All cross-validation and grid search procedures were implemented using 
 existing tools from scikit-learn. 

 1C : Hyperparameter Selection for Logistic Regression Classifier 

 For the classifier we used Logistic Regression with the BoW pipeline from 1A and the cross-validation 
 design from 1B. Logistic Regression performs well on high-dimensional and sparse data, such as 
 Bag-of-Words representations. It provides probabilistic outputs, which can be useful for ranking and 
 threshold tuning, especially when evaluating performance using AUROC. Compared to other classifiers, 



 Logistic Regression is simpler and easier to interpret, making it a good fit for understanding which words 
 contribute to reading-level classification. 

 The hyperparameter we were searching for in our classifier was C, which controls the inverse strength of 
 L2 regularization. Smaller C values can lead to stronger regularization and help prevent overfitting, while 
 larger C values can lead to overfitting because the model will fit the training data more closely. We 
 selected a logarithmically spaced grid of 9 values from 1e-4 to 1e4 to capture a wide spectrum from 
 underfitting to overfitting and find the optimal balance. 

 We used scikit-learn’s liblinear solver, which is optimal for small to medium-sized datasets and supports 
 L2 regularization. There were no convergence issues during training. Early stopping was not needed since 
 logistic regression training is convex. 

 Plot: Mean CV AUROC vs. C 

 Caption:  The best performance was achieved with C=0.001,  which produced a mean AUROC of 
 approximately  0.7240  on the heldout set. 



 1D : Analysis of Predictions for the Best Classifier 

 Below is a confusion matrix created using 5-fold cross-validation predictions from our best classifier 
 (C=0.001): 

 Figure: Confusion Matrix (CV Predictions) 

 Our classifier showed a strong bias toward predicting the lower-level class over the upper-level class. This 
 can be seen from the confusion matrix, where TN is greater than TP. Our analysis revealed that 
 classifying longer documents was marginally more accurate than classifying shorter documents (~0.02% 
 more accurate) which means that the length of the document doesn’t matter too much in how accurate the 
 predictions are. This is because our classifier focuses more on what types of words are present in the text, 
 not the frequency of the words. 

 When analyzing errors by the author, we observed that the classifier struggled most with literary or 
 abstract writers such as Franz Kafka, Thomas Hardy, and Gustave Flaubert, who write more about 
 complex and metaphorical topics which are supposed to make the reader think about a deeper meaning. 
 Conversely, the classifier performed very well on authors like Lewis Carroll, Hugh Lofting, and Margaret 
 Sidney, who write stories more for younger audiences like children, which makes sense since they often 
 use simpler vocab and grammar, and have a clearer sentence structure that aligns with patterns our 
 classifier can predict on. Overall, our model performed better on simpler material (e.g. children’s 
 literature or stories) rather than more metaphorical and complex pieces. 

 1E : Report Performance on Test Set via Leaderboard 

 Using the final pipeline with C = 0.001, we retrained the logistic regression model on the  entire training 
 set  and applied it to the test passages from x_test.csv.  The predicted probabilities were saved to a 
 one-column plain-text file named yproba1_test.txt and submitted to the leaderboard. 



 Leaderboard Submission Result: 
 Our final test set AUROC was  0.67605  on the leaderboard,  which is slightly lower than the 
 cross-validation performance on the heldout data (mean AUROC ~0.7240). This slight drop suggests our 
 cross-validation process provided a reasonably accurate estimate of generalization ability, though it may 
 have slightly overestimated due to overlap in style or structure between CV folds. The difference could 
 also stem from stylistic differences  between the training and test sets, or from natural variation in passage 
 complexity. Overall, the hyperparameter search and CV design were effective in guiding model selection. 

 Problem 2: Open-ended challenge 

 2A : Feature Representation description 

 For Problem 2, we used BERT-based document embeddings provided in the starter code as our feature 
 representation. Specifically, we loaded from x_train_BERT_embeddings.npz, where each row 
 corresponds to a passage in x_train.csv. These embeddings are generated by a pretrained BERT model. 
 Unlike the BoW approach in Problem 1, which relies on simple word count frequencies, BERT 
 embeddings are dense and use surrounding words to contextualize a word’s meaning, so they can 
 generalize better. The embeddings were used directly as input to our classifier without any additional 
 preprocessing or feature engineering, allowing us to take advantage of BERT’s expressive power out of 
 the box. 

 2B : Cross Validation (or Equivalent) description 
 To evaluate generalization performance and tune hyperparameters, we used RandomizedSearchCV with 
 5-fold stratified cross-validation to ensure balanced label distribution in each fold. In contrast to problem 
 1B, we opted for randomized search over grid search to reduce training time. Grid search might have 
 provided more exhaustive results, but it takes much longer. All model development and tuning were 
 conducted exclusively on the training data (x_train.csv and y_train.csv). After selecting the best 
 hyperparameters, we retrained the model on the full training split and evaluated it on a separate 20% 
 held-out validation set that was not used during training or tuning. This setup allowed us to obtain a more 
 reliable estimate of the model’s performance on unseen data using AUROC. 



 2C : Classifier description with Hyperparameter search 

 We selected a random forest classifier (using the RandomForestClassifier from scikit-learn) due to its 
 speed, effectiveness, and interpretability with dense feature vectors like BERT embeddings. 

 We tuned the max_depth hyperparameter, which controls tree complexity and influences overfitting. A 
 smaller max_depth can reduce overfitting but may underfit the data, while a larger max_depth can have 
 poor generalization and overfit the data. Our search used RandomizedSearchCV with 5-fold stratified CV, 
 exploring the following grid: 

 param_grid = { 
 'max_depth': [1, 2, 3, 4, 5, 10, 15, 20, 30, None], 
 'n_estimators': [300], 
 'max_features': ['sqrt'], 
 'min_samples_split': [2], 
 'min_samples_leaf': [1] 

 } 

 We used 10 iterations of randomized search and selected the configuration that maximized AUROC on 
 the validation folds. The best model achieved a validation AUROC of  0.7262  . We visualized how 
 max_depth affects performance below. 

 The plot shows that validation AUROC peaks around max_depth=10 before slightly declining, indicating 
 overfitting at deeper depths. This confirms that tuning max_depth is essential for balancing bias and 
 variance in random forest models trained on BERT features. 



 2D : Error analysis 

 The confusion matrix shows that the classifier slightly favors the upper-level class, since TN is greater 
 than TP. This differs from the Problem 1 model, which under-predicted the upper class. The change may 
 reflect the improved representation power of BERT and contextualization, allowing the classifier to better 
 identify complex passages. The validation set TPR (recall for upper-level) was  0.713  , while the TNR 
 (recall for lower-level) was  0.674  , showing a bias  toward identifying difficult texts. This confusion matrix 
 is not directly comparable to Problem 1’s, since it was generated from a held-out validation split rather 
 than a cross-validation fold. 



 2E : Report Performance on Test Set via Leaderboard 

 Using the best configuration from our cross-validation procedure, we retrained the 
 RandomForestClassifier on the full training set and generated probabilistic predictions for the test set 
 using the BERT embeddings. The predictions were saved to yproba2_test.txt and submitted to the 
 leaderboard. 

 Our final test set AUROC was  0.71989  on the leaderboard, which represents a strong improvement over 
 our Problem 1 model (AUROC = 0.67605) which used TfidfVectorizer and LogisticRegression. The 
 primary reason for this improvement is the shift from sparse BoWs to dense BERT embeddings, which 
 encode deeper semantic and syntactic cues. Random Forest is also better suited to the high-dimensional, 
 contextualized BERT vectors than linear models like LR. 

 From this project, we’ve learned about the many different ways to improve predictions, from using 
 different classifiers, tweaking classifier settings, and using different features. Part 2 showed us 
 specifically how better features can have a greater impact on model performance than changing the 
 model, since our score improved more when using the BERT dataset over the regular x_train dataset than 
 when we were tweaking the model settings and type. 


