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 Figure 1a: 

 Caption 1a: 

 (i) What happens as K increases in terms of under- or over- fitting? 

 As K increases, the model starts overfitting because the training RMSE values get lower at larger 
 K values. Meanwhile, the validation RMSE is higher at larger K values, indicating a loss of 
 generalization on unknown data. 

 (ii) How does the 'best' validation-set performance change from K=2 to 10 to 50? 

 The “best” validation-set performance decreases slightly as we increase the K value. At K=2, the 
 lowest validation RMSE is 0.930, at K=10 the lowest validation RMSE is 0.923, and at K=50 the 
 lowest validation RMSE is 0.919. This makes sense because increasing K should make the model 
 more accurate at some point compared to models with smaller K values before beginning to 
 overfit as training goes on. 

 (iii) What step size? Why did you pick that value? 

 We chose step size 0.8 because it was at this step size that the graphs started to look more stable 
 and not diverge. We started by testing larger step size values such as 5.0 and 2.0 which showed 
 divergence, then incrementally decreased the step size to get to a point where there was no 
 divergence and the graph did not have many sharp peaks/valleys, which happened around 0.8. 



 Figure 1b: 

 Caption 1b: 

 (i) What value of alpha? How did you select it? (you should try several values) 

 We picked an alpha value of 0.5. We selected it by generating plots for several different alpha 
 values: [0.0, 0.1, 0.3, 0.5, 1.0], using different step sizes as well. We observed that at alphas 0.0, 
 0.1, and 0.3 the training RMSE was still decreasing as training went on which meant that the 
 model was still overfitting. Alpha 0.5 was the point at which the training RMSE plateaued and 
 wasn’t decreasing as training went on, so the model didn’t overfit. 

 (ii) What value of step size did you pick? 

 We picked a step size of 0.8. We selected it by generating plots for several different step size 
 values: [0.7, 0.8, 0.9, 1.0]. We observed different combinations of alpha and step size pairs and 
 saw that at alpha=0.5 the model wasn’t overfitting, and step size 0.8 was when the model started 
 looking more stable without divergence and large peaks/valleys in the graph (compared to the 
 larger step sizes of 0.9 and 1.0). 

 (iii) Did you get better validation-set error with this alpha than you did with the K=50, alpha=0 
 result in 3a? 

 The lowest validation RMSE value with alpha=0.0 (0.919) is still lower than the lowest validation 
 RMSE value with alpha=0.5 (0.947). However, as training goes on the validation RMSE with 
 alpha=0.0 gets worse due to overfitting while validation RMSE with alpha=0.5 does not decrease 
 and stays relatively the same. This means that the final validation error is better with alpha=0.5 
 than alpha=0.0, meaning that model has better generalization. 



 Table 1c: 

 K  Alpha  Best RSME  Best MAE 

 2  0  0.930  0.731 

 10  0  0.923  0.724 

 50  0  0.919  0.725 

 50  0.5  0.947  0.746 

 Caption 1c: 

 (i) Focusing on RMSE, how many factors K do you recommend? (ii) Does model ranking change if 
 you were to use MAE instead of RMSE? 

 K=50 because it has the lowest RMSE value of 0.919 when alpha=0. 

 Yes, the model ranking changes to K = 10 being the best model when using MAE instead of 
 RMSE because that model has the lowest MAE of 0.724. 

 Figure 1d: 



 Caption 1d: Do you notice any interpretable trends? What makes sense? What does not make sense 
 to you? 

 One trend is that movies of similar genres seem to be grouped together. For example, in the upper 
 left corner there are many action/adventure movies such as  Raiders of the Lost Ark, Return of the 
 Jedi, Jurassic Park, Indiana Jones,  and  Star Wars.  In the bottom right corner, there are some 
 spooky movies like  Nightmare Before Christmas  and  The Shining.  The middle contains several 
 romance and comedy movies, and children’s movies like  Toy Story, Lion King, etc.  are also close 
 together. It makes sense that the movies would be grouped by genre because they would share 
 similar traits and patterns that the model can pick up on, and also users who like one movie in a 
 genre are likely to rate others similarly, which encourages clustering. 

 However there are some outliers that go against that trend, such as the  Scream  movies and  A 
 Nightmare on Elm Street  which are scattered around  the middle of the graph. Another thing that’s 
 strange is that movies in the same franchise aren’t that close together, like the  Indiana Jones, Star 
 Wars, Jurassic Park,  and  Scream  movies. 

 2a.  For this project, we used the SVD++ algorithm  from the Surprise Library to predict user ratings. 
 SVD++ works by extending SVD, which uses matrix factorization to decompose the original matrix into 
 three matrices to reduce dimensions and make the data easier to interpret. SVD++ takes into account 
 implicit ratings by incorporating which items a user interacts with. Because the MovieLens dataset is 
 relatively sparse, SVD++ is a good choice because it can incorporate both explicit ratings and implicit 
 feedback from which movies users rated/interacted with. To optimize model performance, we performed 
 hyperparameter tuning using RandomizedSearchCV over the following parameters: 

 -  n_factors (number of hidden factors) = [150, 175, 200, 225, 250] 
 -  lr_all (learning rate for all parameters) = [0.010, 0.012, 0.013, 0.014, 0.015, 0.016] 
 -  reg_all (regularization strength for all parameters) = [0.05, 0.07, 0.08, 0.1, 0.12] 

 We also performed 50 iterations using random combinations of the hyperparameters, ran 
 RandomizedSearchCV with all cores to speed up the search, set random state = 42 for debugging 
 purposes, and used a 5-fold cross-validation strategy to ensure reliable performance estimates and reduce 
 any risk of overfitting. For a 5-fold CV, each fold size is approximately 20,000 ratings (100,000 divided 
 by 5) with the training set for each fold as 80,000 ratings and the validation set for each fold as 20,000 
 ratings. Each fold is split evenly at random. Our evaluation metric was MAE, which measures how 
 closely predicted ratings match actual ratings on average. After retrieving best hyperparameters from 
 RandomizedSearchCV, we retrained the final model on the full ratings masked leaderboard set. All 
 predictions were clipped to valid rating range [1, 5] and additionally we rounded the predicted ratings to 
 the nearest integer after clipping. We saw an improved leaderboard MAE performance with rounding, 
 going against our initial intuition to include many decimal points for prediction precision. The 
 improvement from the rounding to nearest integer is likely due to the true ratings also being integers, so 
 rounding would prevent unnecessary penalty from small prediction errors. 



 Open-source tools used include: 

 -  Surprise (SVD++ model, hyperparameter tuning) 
 -  Pandas and NumPy for data manipulation 
 -  Matplotlib for visualization 

 References: 

 https://surprise.readthedocs.io/en/stable/matrix_factorization.html 

 https://en.wikipedia.org/wiki/Singular_value_decomposition 

 2b. 

 Caption:  Each point corresponds to a different combination  of hyperparameters (n_factors, lr_all, 
 reg_all). This figure shows that different configurations can significantly impact valid MAE. Additionally, 
 this reflects the importance of hyperparameter tuning and shows no signs of overfitting or underfitting 
 during model selection. The selection returned n_factors=150, lr_all=0.012, reg_all=0.07 with the lowest 
 MAE value of 0.7233. The MAE varies between approximately 0.723 and 0.732 across trials, showing no 
 underfitting because some hyperparameter combinations do perform well and better than others. There is 
 no indication of overfitting, as the validation MAE remains stable across trials without extreme 
 fluctuations or outliers with very low values. 

https://surprise.readthedocs.io/en/stable/matrix_factorization.html
https://en.wikipedia.org/wiki/Singular_value_decomposition


 2c. 
 (i) Discuss how your leaderboard number compares to performances on the provided test 
 split of the dev set. 

 The SVD++ model achieved a dev set test MAE of 0.4899 but the leaderboard MAE was 
 0.668 which is a noticeable increase. This gap suggests some degree of overfitting to the 
 dev set. This could be due to the leaderboard having noisier data than our development 
 test set. Another reason for this could be that the leaderboard contains users or items that 
 were not well-represented in the development set, making predictions harder. 

 (ii) Compare contrast Problem 1 and Problem 2 solutions 

 Problem 1 focused on matrix factorization methods which optimizes mainly the number 
 of latent factors k. In contrast, problem 2 incorporated implicit feedback and was fine 
 tuned over multiple hyperparameters (latent dimensions, learning rate, and regularization 
 strength) with the addition of cross-validation to ensure reliability of results. As a result, 
 problem 2 solution generalized much better and achieved a lower MAE both in 
 development testing set and on the leaderboard. 

 MAE Performance Table 

 Model  Dev Set Test MAE  Leaderboard MAE 

 SVD++  0.490  0.6684 

 K=10 MF  0.724  N / A 

 GradientBoosting  0.533  N / A 

 XGBoost  0.512  N / A 



 2d. 1 paragraph discussing the overall pros and cons of your current approach. What other kinds of 
 recommendation problems would it work well for? What are its limitations? What kinds of 
 data/problems would this approach not work well for? 

 The SVD++ model worked well because it used both explicit ratings and implicit user-item 
 interactions. This led to making it very effective for sparse, user-item matrix recommendation 
 problems like MovieLens. The main strength of SVD++ lies in its ability to generalize reasonably 
 well to unseen data when properly tuned. However, the biggest con for SVD++ was its expensive 
 computation. It took around 20 minutes of compute time to complete RandomizedSearchCV and 
 achieve the lowest validation MAE. Furthermore, one limitation of SVD++ is that it is slow to 
 train. This is amplified when we increase the number of hyperparameter trials or increase the size 
 of the data set. Using this approach, this model assumes that user preferences can be captured 
 through linear interactions of latent factors; this may not be well-suited for very complex datasets. 
 Additionally, this model would not work as well for problems where users or items have no 
 interactions. 

 1 paragraph reflecting on this project: What are the key takeaway lessons you learned? 

 My biggest key takeaway lessons that I learned is how critical hyperparameter tuning, 
 cross-validation, and model selection is to achieving a strong generalization in machine learning. 
 With countless terrible leaderboard submissions, this project also helped highlight that a good dev 
 set performance does not always guarantee leaderboard success. I can aim for better 
 generalization by being wary about the risks of overfitting and having thoughtful considerations 
 on how to handle model complexity. I also learned some very cool preprocessing steps techniques 
 such as clipping and rounding predictions that can have a huge impact on certain evaluation 
 metrics. Overall, this project helped me understand recommendation system pipelines, the 
 common pitfalls in modelling, and several practical evaluation techniques. 


